Sunday, May 5, 2013

Fermi and Swift Observe Record-setting Gamma Ray Burst

The brightest Gamma ray bursts (GRB) are important for quantum gravity, as the photons have a short enough wavelength and go over long enough distances that spacetime foam [arxiv.org] should give them dispersion. The best test so far is based mostly on GRB 080916C [skyandtelescope.com], and from what I hear this new burst may be able to do better.

A little background.

The Heisenberg uncertainty principle predicts "virtual" particles. The time part of the uncertainty principle is delta T delta E > h, where E is energy, T is time and h is Planck's constant (I am ignoring factors of 2 pi). As the time of an event (say, the time for a photon to travel one wavelength) gets shorter, the energy of the virtual particles allowed (delta E) gets bigger. For short enough time periods (i.e., near the Planck time), the energy is enough that the virtual particles are black holes, popping in and out of existence, and severely mangling the spacetime on that time / distance scale. This mangling is called "spacetime foam". The wavelength of the GRB photons is much larger than the Planck distance (roughly, the virtual black holes should live for a Planck time and have an event horizon the size of the Planck distance), but the GRBs are very far away, and the GRB photons pass over many, many, Planck distances along the way, and each adds a little nudge. This effect depends on the photon energy (it is larger for higher energies, as these are smaller photons), thus the "dispersion" mentioned in these papers.

The really cool thing is that the existing dispersion limits seem to be less than many people's expectations. If this is confirmed (and pushed down to a little smaller distance scale), then the conventional spacetime foam ideas I outlined above here may not be correct. This, in fact, may be the first evidence for the "holographic principle," which implies a smoother spacetime than the above ideas. In any case, this is the only way we have at present to say anything experimental about quantum gravity, so the more data the better.

Source: http://rss.slashdot.org/~r/Slashdot/slashdotScience/~3/NEUlr8haW1I/story01.htm

super tuesday states shepard fairey is snooki pregnant snooki pregnant gbc hedy lamarr kowloon walled city

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.